Certified Fiber Optics Installer (FOI) Competency Requirements

The following knowledge competency listing identifies the individual subject topics which Fiber Optics Installers are expected to learn in preparation for the ETA[®] International FOI certification written examination:

1.0 HISTORY OF FIBER OPTICS AND BROADBAND ACCESS

- 1.1 Trace the evolution of light in communications
- 1.2 Summarize the evolution of optical fiber manufacturing technology
- 1.3 Track the evolution of optical fiber integration and application
- 1.4 Describe the role of fiber optics in high-speed Internet access

2.0 PRINCIPLES OF FIBER OPTIC TRANSMISSION

- 2.1 Describe the basic parts of a fiber-optic link
- 2.2 Describe the basic operation of a fiber-optic transmitter
- 2.3 Describe the basic operation of a fiber-optic receiver
- 2.4 Explain how to express gain and loss using the decibel (dB)
- 2.5 Explain how to express optical power in dBm (measured power referenced to one milliwatt)

3.0 BASIC PRINCIPLES OF LIGHT

- 3.1 Describe light as electromagnetic energy
- 3.2 Describe light as particles and waves
- 3.3 Describe the electromagnetic spectrum and locate light frequencies within the spectrum in relation to radio and microwave communication frequencies
- 3.4 Describe the refraction of light
- 3.5 Explain how the index of refraction is used to express the speed of light through a transparent medium
- 3.6 Explain reflection to include angle of incidence, critical angle, angle of refraction, and total internal reflection
- 3.7 Explain Snell's law and its use to calculate the critical angle of incidence
- 3.8 Explain Fresnel reflections and how they impact the performance of a fiber optic communication system

4.0 OPTICAL FIBER CONSTRUCTION AND THEORY

- 4.1 Describe the basic parts of an optical fiber
- 4.2 List the major standards organizations that publish standards that define the performance of optical fibers used in the telecommunications industry
- 4.3 List the different materials that can be used to construct an optical fiber
- 4.4 Describe the tensile strength of an optical fiber
- 4.5 Describe optical fiber manufacturing techniques
- 4.6 Describe mode in an optical fiber
- 4.7 Describe how the number of modes in an optical fiber is defined by core diameter and wavelength
- 4.8 Describe the refractive index profiles commonly found in optical fiber
- 4.9 Explain the propagation of light through a multimode step index optical fiber
- 4.10 Explain the propagation of light through a multimode graded index optical fiber
- 4.11 Explain the propagation of light through a single-mode optical fiber
- 4.12 Describe the location and function of an optical trench
- 4.13 Describe the advantages of single-mode and multimode bend insensitive optical fiber

5.0 OPTICAL FIBER CHARACTERISTICS

- 5.1 Describe dispersion in an optical fiber
- 5.2 Describe modal dispersion and its effects on the bandwidth of an optical fiber
- 5.3 Describe material dispersion and its effects on the bandwidth of an optical fiber
- 5.4 Explain waveguide dispersion in a single-mode optical fiber.
- 5.5 Explain chromatic dispersion in an optical fiber

- 5.6 Explain polarization mode dispersion in a single-mode optical fiber
- 5.7 Describe how dispersion affects bandwidth in an optical fiber
- 5.8 Describe the causes of attenuation in an optical fiber
- 5.9 Describe attenuation versus wavelength in an optical fiber
- 5.10 Describe a microbend in an optical fiber
- 5.11 Describe a macrobend in an optical fiber
- 5.12 Explain the difference between a bend sensitive and bend insensitive single-mode optical fiber
- 5.13 Explain the difference between a bend sensitive and bend insensitive multimode optical fiber
- 5.14 Describe the numerical aperture of an optical fiber
- 5.15 Explain how optical fibers are designated in ISO/IEC 11801
- 5.16 Explain how optical fibers are designated in IEC 60793-2-10 and IEC 60793-2-50
- 5.17 Describe how optical fibers are designated in ANSI/TIA-568-C
- 5.18 Describe how the International Telecommunications Union (ITU[®]) designates optical fibers
- 5.19 Describe the performance characteristics of ANSI/TIA-568-C.3 and ISO/IEC 11801-recognized optical fibers
- 5.20 Describe the performance characteristics of ITU-T G.652, ITU-T G.655, and ITU-T G.657 singlemode optical fibers
- 5.21 Describe the attenuation and bandwidth characteristics of HCS/PCS (Hard Clad Silica/Plastic Clad Silica) and plastic optical fibers

6.0 FIBER OPTIC SAFETY

- 6.1 Cite the government agency that publishes and enforces regulations on safety in the workplace
- 6.2 Explain how to safely handle and dispose of fiber optic cable and bare optical fiber
- 6.3 List the laser hazard classifications of fiber optic light sources and describe the dangers associated with each
- 6.4 Describe potential chemical hazards in the fiber optic environment and explain the purpose of the material safety data sheet (MSDS)
- 6.5 Describe potential electrical hazards in the fiber optic installation environment
- 6.6 Describe typical work place hazards in the fiber optic environment

7.0 FIBER OPTIC CABLES

- 7.1 Explain the purpose of each component displayed in a cross section view of a fiber optic cable
- 7.2 Explain why and where loose buffer fiber optic cable is used
- 7.3 Describe the difference between gel-filled and gel-free loose buffer fiber optic cables
- 7.4 Describe tight buffer fiber optic cable
- 7.5 Compare common strength members found in fiber optic cables
- 7.6 Name common jacket materials found in fiber optic cables
- 7.7 Describe simplex and duplex cordage and explain the difference between cordage and cable
- 7.8 Describe the characteristics of the following:
 - 7.8.1 Distribution cable
 - 7.8.2 Breakout cable
 - 7.8.3 Armored cable
 - 7.8.4 Messenger cable
 - 7.8.5 Ribbon cable
 - 7.8.6 Submarine cable
 - 7.8.7 Hybrid cable
 - 7.8.8 Composite cable
- 7.9 Explain how and when a fan-out kit is used
- 7.10 Explain how and when a breakout kit is used
- 7.11 Describe the National Electrical Code (NEC®) fiber-optic cable types
- 7.12 Describe the NEC listing requirements for fiber-optic cables
- 7.13 Explain the difference between a listed and nonlisted fiber-optic cable
- 7.14 List the types of markings typically found on the jacket of a fiber-optic cable
- 7.15 Describe the TIA-598-C color-coding scheme for individual fibers bundled in a fiber-optic cable
- 7.16 Describe the TIA-598-C color-coding scheme for premises cable jackets
- 7.17 Explain how numbering is used to identify the individual fibers bundled in a fiber-optic cable
- 7.18 Describe how to use sequential markings to determine fiber-optic cable length

8.0 SPLICING

- 8.1 Describe the intrinsic factors that affect splice performance
- 8.2 Describe the extrinsic factors that affect splice performance
- 8.3 Explain how a mechanical splice creates a low loss interconnection
- 8.4 Describe how to assemble a mechanical splice
- 8.5 Explain how a fusion splicer creates a low loss interconnection
- 8.6 Describe the basic operation of a fusion splicer
- 8.7 Describe the different alignment techniques that can be used to align the optical fibers
- 8.8 Explain how to assemble and protect a fusion splice
- 8.9 List the ANSI/TIA-568-C inside plant splice performance requirements
- 8.10 List ANSI/TIA-758-B outside plant splice performance requirements
- 8.11 Describe the Telcordia GR-765 required and objective fusion splice insertion loss requirements for passive and active alignment splicers

9.0 CONNECTORS

- 9.1 Describe the basic components of a fiber optic connector
- 9.2 Describe common connector ferrule materials
- 9.3 List the intrinsic factors that affect connector performance
- 9.4 List the extrinsic factors that affect connector performance
- 9.5 Describe the following endface geometries:
 - 9.5.1 Flat
 - 9.5.2 Curved
 - 9.5.3 Angled
 - 9.5.4 Lensed
- 9.6 Describe return or back reflections, return loss, and reflectance in an interconnection
- 9.7 Explain how endface geometry affects return loss and reflectance
- 9.8 Describe how an interferometer is used in the evaluation of endface geometry
- 9.9 Describe the following critical parameters that are required by Telcordia GR-326 to evaluate connector endface geometry for single-mode connectors and jumper assemblies:
 - 9.9.1 Radius of curvature
 - 9.9.2 Apex offset
 - 9.9.3 Fiber undercut or protrusion
- 9.10 Explain the difference between a contact and noncontact connector
- 9.11 Describe the ANSI/TIA-568 recognized connectors
- 9.12 Describe small form factor connectors
- 9.13 Describe MPO connectors
- 9.14 Describe a pigtail and the potential advantages it offers over field terminations
- 9.15 Describe the steps involved in an oven cured epoxy connector termination and polish
- 9.16 Describe the steps involved in an anaerobic epoxy connector termination and polish
- 9.17 Explain how machine polishing produces a better and more consistent endface than hand polishing
- 9.18 Describe pre-polished connector termination
- 9.19 Explain how to properly clean a connector endface using dry cleaning techniques
- 9.20 Explain how to properly clean a connector endface using wet-dry cleaning techniques
- 9.21 Explain how to examine the endface of a connector per ANSI/TIA-455-57-B and IEC 61300-3-35
- 9.22 List the ANSI/TIA-568-C.3 maximum insertion and return loss values for multimode and singlemode mated connector pairs
- 9.23 List the ITU-T G.671 maximum insertion loss and reflectance values for single-mode single-fiber mated connector pairs
- 9.24 Explain how to use the ANSI/TIA-568-C.3 color code to identify multimode and single-mode connectors and adapters

10.0 FIBER OPTIC LIGHT SOURCES

- 10.1 Describe the basic operation and types of LED light sources used in fiber optic communications
- 10.2 Describe the basic operation and types of laser light sources used in fiber optic communications
- 10.3 Describe LED performance characteristics
- 10.4 Describe laser performance characteristics

- 10.5 Describe the performance characteristics of an LED transmitter
- 10.6 Describe the performance characteristics of a laser transmitter
- 10.7 Explain the difference between a serial and parallel laser transmitter
- 10.8 Describe the laser types and wavelengths associated with serial and parallel laser transmitters
- 10.9 Describe the optical fiber types associated with VCSEL serial and parallel laser transmitters
- 10.10 Explain the safety classifications of the light sources used in fiber optic communication

11.0 FIBER OPTIC DETECTORS AND RECEIVERS

- 11.1 Describe the basic operation of a photodiode
- 11.2 Describe the basic components in a fiber optic receiver
- 11.3 Explain dynamic range and operating wavelength
- 11.4 Explain why an optical attenuator may be used in a communication system

12.0 CABLE INSTALLATION AND HARDWARE

- 12.1 Explain manufacturer installation cable specifications
- 12.2 Discuss ANSI/TIA-568-C performance specifications for the optical fiber cables recognized in premises cabling standards to include:
 - 12.2.1 Inside plant cable
 - 12.2.2 Indoor-outdoor cable
 - 12.2.3 Outside plant cable
 - 12.2.4 Drop cable
- 12.3 Explain the static and dynamic loading on a fiber optic cable during installation
- 12.4 Describe commonly used installation hardware
- 12.5 Summarize the following types of preparation:
 - 12.5.1 Patch panel
 - 12.5.2 Racks and cable
 - 12.5.3 Splice enclosure
- 12.6 Describe the following types of installations:
 - 12.6.1 Tray and duct
 - 12.6.2 Conduit
 - 12.6.3 Direct burial
 - 12.6.4 Aerial
 - 12.6.5 Blown fiber
 - 12.6.6 Wall plate
- 12.7 Describe the permitted locations defined in NEC Article 770 for the following cables:
 - 12.7.1 Plenum
 - 12.7.2 Riser
 - 12.7.3 General-purpose
 - 12.7.4 Unlisted conductive and nonconductive outside plant cables
- 12.8 Describe the NEC fiber-optic cable types that might require grounding or isolation.
- 12.9 Explain entrance cable bonding and grounding per NEC Articles 250, 770.93, and 770.100
- 12.10 Recognize that ANSI/TIA-606-B concisely describes the administrative record keeping elements of a modern telecommunications infrastructure
- 12.11 Explain that the administration includes basic documentation and the timely updating of drawings, labels, and records
- 12.12 Explain why proper polarity is required to ensure the operation of bidirectional fiber optic communication systems
- 12.13 Explain the roles of the following:
 - 12.13.1 National Electrical Code (NEC®)
 - 12.13.2 Canadian Electrical Code (CEC)
 - 12.13.3 National Electrical Safety Code (NESC®)

13.0 FIBER OPTIC SYSTEM ADVANTAGES

- 13.1 Compare the bandwidth advantages of optical fiber over twisted pair and coaxial copper cables
- 13.2 Compare the attenuation advantages of optical fiber over twisted pair and coaxial copper cables
- 13.3 Explain the electromagnetic immunity advantages of fiber optic cable over copper cable
- 13.4 Describe the size advantages of fiber optic cable over copper cable

- 13.5 Describe the weight-saving advantages of fiber optic cable over copper cable
- 13.6 Describe the security advantages of fiber optic cable over copper cable
- 13.7 Compare the safety advantages of fiber optic cables over copper cables

14.0 TEST EQUIPMENT AND LINK/CABLE TESTING

- 14.1 Explain why test equipment calibration should be traceable to the National Institute of Standards and Technology (NIST[®]) calibration standard
- 14.2 Describe the types of fiber optic test equipment that can be used to test for continuity
- 14.3 Explain the use of a visual fault locator (VFL) when troubleshooting a fiber span
- 14.4 Describe the basic operation of a multimode and single-mode optical loss test set (OLTS)
- 14.5 Explain the difference between a patch cord and a measurement quality jumper (MQJ)
- 14.6 Define the purpose of a mode filter
- 14.7 Explain why five small-radius nonoverlapping loops around a mandrel may be required on the transmit jumper when measuring multimode link attenuation in accordance with ANSI/TIA-526-14-A
- 14.8 Explain why a single turn 30mm in diameter loop must be applied to the transmit jumper when measuring single-mode link attenuation in accordance with ANSI/TIA-526-7
- 14.9 Explain why the encircled flux requirement was developed for multimode link attenuation measurements
- 14.10 Explain why multimode insertion loss measurements being performed in accordance with ANSI/TIA-526-14-B require a modal controller on the transmit jumper
- 14.11 Describe how to measure the optical loss in a patch cord with an OLTS using the steps described in ANSI/TIA-526-14, method A, two-test jumper reference
- 14.12 Summarize the basic operation of an optical time domain reflectometer (OTDR)

End of Knowledge Competencies

Find an ETA approved school and approved test site: <u>http://www.eta-i.org/test_sites.html</u>

Suggested Study Materials and Resources for ETA Fiber Optics Installer Certification:

- Fiber Optics Installer (FOI) Certification Exam Guide, Bill Woodward; ISBN 978-1119011507; Sybex, Inc.; November 2014; softcover; 560 ppg. Available through ETA 800-288-3824, <u>www.eta-i.org</u>
- Cabling: The Complete Guide to Copper and Fiber-Optic Networking, 5E; Andrew Oliviero, Bill Woodward; ISBN 978-1-118-80732-3; Sybex, Inc.; March 2014; softcover; 1284 ppg. Available through ETA 800-288-3824, <u>www.eta-i.org</u>
- Four Years of Broadband Growth; The White House; June 2013; 28 ppg; http://www.whitehouse.gov/sites/default/files/broadband_report_final.pdf
- Troubleshooting Optical Fiber Networks: Understanding and Using Optical Time-Domain Reflectometers, 2E; Duwayne Anderson, Larry Johnson, Florian Bell; ISBN 978-0387098470; Elsevier Academic Press; May 2004; hardcover; 437 ppg; 800-545-2522
- Technology Series Videos and CDs; The Light Brigade, 800-451-7128, www.lightbrigade.com
- **FNT Fiber Optic Installer, Rev.2;** Jeffrey Dominique, FOT; 2005; FNT Publ.; \$45, Available: <u>www.f-n-t.com</u>; (formerly Fiber Optic Theory & Applications; the FNT Fiber Optic Installer, Rev.3 will be available 2016);
- Technicians Guide to Fiber Optics, 4E; Donald J. Sterling; ISBN 1-4018-1270-8; Delmar Learning; Dec 2003; hardcover; 384 ppg; Available through ETA 800-288-3824, www.eta-i.org
- Fiber Optic Installer's Field Manual; Bob Chomycz; ISBN 0-07-135604-5; McGraw-Hill; Jun 2000; softcover; 368 ppg; —Available through ETA at 800-288-3824, www.eta-i.org
- Fiber Optic Installer and Technician Guide; Bill Woodward, Emile Husson; ISBN 978-0782143904; Sybex, Inc; July 2005; hardcover; 496 ppg; Available through ETA 800-288-3824, www.eta-i.org
- Fiber Optic Communications; James N. Downing; ISBN 978-1401866358; Delmar Cengage Learning; September 2004; softcover; 378 ppg; Available through ETA 800-288-3824, www.eta-i.org
- Understanding Fiber Optics, 5E; Jeff Hecht; ISBN: 978-0131174290; Prentice-Hall; April 2005; hardcover; 800 ppg
- Introduction to Fiber Optics, 3E; John Crisp, Barry Elliott; ISBN 978-0750667562; Newnes; Dec 2005; softcover; 245 ppg
- National Electrical Code, 2014; National Fire Protection Assn., Sept., 2013; www.nfpa.org

ETA Fiber Optics Installer Committee

Committee Chairman:

Agard, Rich, FOI, RESIma Alicto, Al, FOI Arndt, David, FOI Booth, Richard, FOI, FOT Burch, Glenn, SAEFAB, FOT Casbeer, Chuck, FOD Dadaian. Scott DiMauro, Michael Dominique, Jeffrey, FOI, FOT Forrest, Jr., Ed Giordano, Timothy, FOT, CETsr Gosnay, Greg, FOI, FOT Groves, JB, FOI, FOT, et al Guadalupe, Felipe Johnson, Larry Limtiaco, John, FOI, DCI Milione, Dr. Ron, CETma, FOD Morris, Rohan, FOT-OSP Quinby, Eric, FOI O'Shay, L. Celeste Rivera, Kenneth Smith, Joe, FOI Stone, Don, SAEFAB, FOT, CFODE Stover, Robert, FOI, FOT, DCI Taha, Khalid, FOD, FOT, FOI Teague, Brian Wasser, Leonard, FOI Wilson, Doug

Bill Woodward, P.E., FOD (VA)

Phila. Fiber Optic Training, (PA)

Casper College, (WY) ETA International, (AZ) Kitco Fiber Optics, (VA) Infotec, ECPI University, (VA) Kitco Fiber Optics. (VA) Focus Educational Services, (FL) Fiber Network Training, (AZ) RaceMarketingServices, (GA) USMC, (CA) Yeager Career Ctr, (WV) WCJC Ft. Bend Tech. Ctr., (TX) Kitco Fiber Optics, (VA) The Light Brigade, (WA) L & K Communications, (Guam) PSEG-Wireless Comm., (NY) Vector Tech. Institute, (FL, Jam) Corning Cabling Systems, (NC) FOIRandD, Ltd (WA) J M Fiber Optics, (CA) Telecom Training Div-TEEX, (TX) Kitco Fiber Optics, (VA) Advanced Tech. Ctr. (VA) ECPI University, (VA) MicroCare-Sticklers, (CT) Tool Pouch Training, (CA) FiberQA, (CT)

wwoodward@ursanav.com

ragard@aol.com alalicto@gmail.com darndt@caspercollege.edu richard.w.booth@gmail.com glenn.burch@kitcofo.com ccasbeer@infotecpro.com scott.dadaian@kitcofo.com m_dimauro@bellsouth.net jeffdominique@f-n-t.com edwforrest@gmail.com gio0905@gmail.com ggosnay@access.k12.wv.us jbgroves@wcjc.edu felipe.guadalupe@kitcofo.com larry@lightbrigade.com anital@teleguam.net ron.p.milione.ctr@us.army.mil rohmor@cwjamaica.com eric.quinby@corning.com w47lton@frontier.com krivera@jmfiberoptics.com joe.smith@teexmail.tamu.edu dstone@kitcofo.com rstover@vbschools.com ktaha@ecpi.edu brianteague@microcare.com

dwilson@fiberqa.com

ETA certification programs are accredited through the ICAC, complying with the ISO/IEC 17024 standard.

