ETA Common Formulas

Conversion Factors:

$$
\begin{array}{lrl}
\pi(\mathrm{Pi})=3.14 & 2 \pi & =6.28 \\
\pi^{2}=9.87 & \log \pi=0.497
\end{array}
$$

1 meter $=3.28$ feet
1 inch $=2.54$ centimeters
1 radian $=57.3^{\circ}$
Resonant frequency formulas
Where f is in kHz, L is in microhenries, C is in microfarads

$$
\begin{aligned}
& f_{\mathrm{kHz}}=159.2 \div \sqrt{\mathrm{LC}} \\
& \mathrm{f}_{\text {resonant }}=\frac{1}{2 \pi \sqrt{\mathrm{LC}}}
\end{aligned}
$$

Frequency \& Wavelength formulas $\quad f=$ frequency, $\lambda=$ wavelength $0.5 \lambda=180^{\circ}=$ half wave $0.25 \lambda=90^{\circ}=$ quarter wave

$$
\begin{array}{ll}
\mathbf{f}_{\mathrm{kHz}}=\left(3 \times 10^{8}\right) \div \lambda \text { meters } & \text { or } f_{\mathrm{MHz}}=\mathbf{9 8 4} \div \lambda \text { feet } \\
\lambda \text { meters }=\left(3 \times 10^{8}\right) \div f_{\mathrm{kHz}} & \text { or } \lambda \text { feet }=\mathbf{9 8 4} \div f_{\mathrm{MHz}}
\end{array}
$$

Sine wave conversion (RMS = root mean square).
Effective value $($ RMS $)=0.707 \times$ Peak Value $=1.11 \times$ Average Value Peak Value $=1.414 \times$ Effective Value $($ RMS $)=1.57 \times$ Average Value Average Value $=0.637 \times$ Peak Value $=0.9 \times$ Effective Value (RMS) Identify: Waveform, Peak (amplitude), RMS, 1 cycle over time period (frequency), Peak to peak, and practical average.

Voltage gain in decibels

Gain dB = $20 \log$ (Vout / Vin)

Ratio of 2 power levels in decibels

$$
\text { Gain } d B=10 \log \left(P_{1} \div P_{2}\right)
$$

Resistors in series

$$
\mathbf{R}=\mathbf{R}_{1}+\mathbf{R}_{2}+\mathbf{R}_{3} \ldots
$$

Resistors in parallel

$$
1 / \mathbf{R}=(1 / \mathbf{R})+\left(1 / \mathbf{R}_{2}\right)+(\mathbf{1} / \mathbf{R}) \ldots
$$

Inductors connected in series

$$
\mathbf{L}=\mathbf{L}_{1}+\mathbf{L}_{2}+\mathbf{L}_{3}+\ldots
$$

Inductors connected in parallel

$$
1 \div L=\left(1 \div L_{1}\right)+\left(1 \div L_{2}\right) \ldots
$$

Reactance of inductors
where $\mathbf{X}_{\mathbf{L}}$ is reactance, \boldsymbol{f} is frequency, and \mathbf{L} is inductance

$$
\mathbf{X}_{\mathrm{L}}=\mathbf{2} \times \pi \times f \times \mathbf{L}
$$

$\mathbf{P}=\mathbf{I} * \mathbf{E}$, the power being dissipated by the resistor is a product of the current and the applied voltage.

Time constants
T (Greek Tau), R (ohms), C (microfarads), L (microhenries)
RL circuit: $1 \mathbf{T}(\mathbf{s e c})=\mathbf{L}(\mu \mathrm{H}) \div \mathbf{R}(\Omega)$
RC circuit: $1 \mathbf{T}(\mathbf{s e c})=\mathbf{R}(\Omega) \times \mathbf{C}(\mu \mathrm{f})$
How to Compute Charge or Quantity of Electricity where \mathbf{Q} is the charge (in coulombs), \mathbf{C} is the capacitance (in farads), and \mathbf{V} is the potential difference (in volts).

$$
\mathbf{Q}=\mathbf{C} \times \mathbf{V}
$$

Energy Storage in a Capacitor
where \mathbf{W} is the energy (in Joules), \mathbf{C} is the capacitance (in farads), and \mathbf{V} is the potential difference (in volts).

$$
\mathbf{W}=1 / 2 \mathbf{C} \times \mathbf{V}^{2}
$$

Capacitors connected in parallel

$$
\mathbf{C}=\mathbf{C}_{1}+\mathbf{C}_{2}+\mathbf{C}_{3}+\ldots
$$

Capacitors connected in series

$$
1 \div C=\left(1 \div C_{1}\right)+\left(1 \div C_{2}\right)+\left(1 \div C_{3}\right) \ldots
$$

Reactance of capacitors

$$
X_{C}=1 \div(2 \times \pi \times f \times C)
$$

Impedance Formulas for a Series Circuit $\mathbf{Z}=\sqrt{\mathbf{R}^{2}+\left(\mathbf{X}_{\mathrm{L}}-\mathbf{X}_{\mathrm{C}}\right)^{2}}$ where Z is impedance Impedance Formulas for R and X in Parallel

$$
\mathbf{Z}=\sqrt{\frac{\mathbf{R X}}{\mathbf{R}^{2}+\mathbf{X}^{2}}}
$$

Battery internal resistance

$\mathbf{V}_{\text {out }}=\mathbf{E M F}-\mathbf{V}_{\text {terminal }}$

