Potential Divider

As the name says, we divide the potential or reduce the voltage in a circuit with help of potential divider.
$\mathbf{V}_{\text {out }}=\mathbf{V}_{\text {in }} * \mathbf{R}_{2} /\left(\mathbf{R}_{1}+\mathbf{R}_{2}\right)$

Current Divider

It is used to redirect current flowing in a circuit.
$I_{\text {out }}=I_{\text {in }} * \mathbf{R}_{1} /\left(\mathbf{R}_{1}+\mathbf{R}_{2}\right)$
Balanced Wheatstone Bridge
A bridge used to measure resistances.
$\left(\mathbf{R}_{1} / \mathbf{R}_{2}\right)=\left(\mathbf{R}_{3} / \mathbf{R}_{4}\right)$
Voltage gain in decibels
Gain dB=20 log (Vout / Vin)
Ratio of 2 power levels in decibels
Gain dB=20 log (Vout / Vin)
Resonant frequency
$\mathrm{F}_{\mathrm{R}}=.159 / \sqrt{\mathrm{LC}}$
$\mathbf{P}=\mathbf{I} * \mathbf{E}$, the power being dissipated by the resistor is a product of the current and the applied voltage.

Resistors in series
$\mathbf{R}=\mathbf{R}_{1}+\mathbf{R}_{2}+\mathbf{R}_{3} \cdots$
Resistors in parallel
$1 / R=\left(1 / R_{1}\right)+\left(1 / R_{2}\right)+\left(1 / R_{3}\right) .$.
The resistance of a conductor at a temperature, t, is given by the equation: $\mathbf{R}_{\mathrm{t}}=\mathbf{R} \mathbf{0}(\mathbf{1}+\boldsymbol{\alpha t}+\mathbf{b} \mathbf{t} \mathbf{2}+\mathbf{y} \mathbf{t} \mathbf{3})$ where $\boldsymbol{\alpha}, \mathbf{b}, \mathbf{y}$ are constants and $\mathbf{R 0}$ is the resistance at $0^{\circ} \mathrm{C}$. Note that $\mathrm{b} \& \mathrm{y}$ are very small hence they can be neglected.

Therefore above equation simplifies to: $\mathbf{R}_{\mathbf{t}}=\mathbf{R}_{\mathbf{0}}(\mathbf{1}+\boldsymbol{\alpha} \mathbf{t})$ where $\boldsymbol{\alpha}=$ temperature coefficient of resistance.

Inductors connected in series
$\mathbf{L}=\mathbf{L}_{1}+\mathbf{L}_{2}+\mathbf{L}_{3}+\ldots$
Inductors connected in parallel
$1 / L=\left(1 / L_{1}\right)+\left(1 / L_{2}\right) \ldots$
Reactance of inductors
$\mathbf{X}_{\mathrm{L}}=\mathbf{2} * \pi * \boldsymbol{f} \mathbf{L}$
where X_{L} is reactance, \boldsymbol{f} is frequency, and L is inductance

$$
\begin{array}{ll}
\mathbf{E}=\text { Voltage } & \mathbf{I}=\text { Current } \\
\mathbf{P}=\text { Power } & \mathbf{R}=\text { Resistance }
\end{array}
$$

Current flowing in a Capacitor

The current flowing in a capacitor is proportional to the product of the capacitance, \mathbf{C}, and the rate of change of applied voltage.
$i=C \times($ rate of change of voltage $[d * V / d * t])$
How to Compute Charge or Quantity of Electricity $\mathbf{Q}=\mathbf{C} * \mathbf{V}$
where \mathbf{Q} is the charge (in coulombs), \mathbf{C} is the capacitance (in farads), and \mathbf{V} is the potential difference (in volts).

Energy Storage in a Capacitor
 $\mathbf{W}=1 / 2 \mathbf{C} * \mathbf{V}^{\mathbf{2}}$

where \mathbf{W} is the energy (in Joules), \mathbf{C} is the capacitance (in Farads), and \mathbf{V} is the potential difference (in Volts).

Capacitors connected in parallel
$\mathrm{C}=\mathrm{C}_{1}+\mathrm{C}_{2}+\mathrm{C}_{3}+\ldots$
Capacitors connected in series
$\mathbf{1} / \mathbf{C}=\left(\mathbf{1} / \mathrm{C}_{1}\right)+\left(\mathbf{1} / \mathrm{C}_{2}\right) \ldots$
Reactance of capacitors
$\mathbf{X}_{\mathrm{C}}=\mathbf{1} /(\mathbf{2} * \pi * f * \mathbf{C})$

